Polynomial differential systems having a given Darbouxian first integral

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial differential systems having a given Darbouxian first integral ✩

The Darbouxian theory of integrability allows to determine when a polynomial differential system in C2 has a first integral of the kind f λ1 1 · · ·f λp p exp(g/h) where fi , g and h are polynomials in C[x, y], and λi ∈ C for i = 1, . . . , p. The functions of this form are called Darbouxian functions. Here, we solve the inverse problem, i.e. we characterize the polynomial vector fields in C2 h...

متن کامل

Planar polynomial vector fields having a polynomial first integral can be obtained from linear systems

We consider in this work planar polynomial differential systems having a polynomial first integral. We prove that these systems can be obtained from a linear system through a polynomial change of variables.

متن کامل

Polynomial First Integrals of Polynomial Differential Systems

In this paper we shall primarily study polynomial integrability of the differential system ẋ = −y + Pn(x, y), ẏ = x + Qn(x, y), n = 2, 3, where Pn and Qn are homogeneous polynomials of degree n. By taking various yet very elementary ways, we not only straightforwardly find the necessary and sufficient integrability conditions but also explicitly present the corresponding polynomial first integr...

متن کامل

Counting Integral Matrices with a given Characteristic Polynomial

We give a simpler proof of an earlier result giving an asymptotic estimate for the number of integral matrices, in large balls, with a given monic integral irreducible polynomial as their common characteristic polynomial. The proof uses equidistributions of polynomial trajectories on SL(n, R)/SL(n, Z), which is a generalization of Ratner’s theorem on equidistributions of unipotent trajectories....

متن کامل

Polynomials with Integral Coefficients, Equivalent to a given Polynomial

Let f(x0, . . . , xn) be a homogeneous polynomial with rational coefficients. The aim of this paper is to find a polynomial with integral coefficients F (x0, . . . , xn) which is “equivalent” to f and as “simple” as possible. The principal ingredient of the proof is to connect this question with the geometric invariant theory of polynomials. Applications to binary forms, class numbers, quadrati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Mathématiques

سال: 2004

ISSN: 0007-4497

DOI: 10.1016/j.bulsci.2004.04.001